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semiconductor-to-insulator)

Abstract – In the present paper we report on the experimental electron sheet density vs.magnetic
field diagram for the magnetoresistance Rxx of a two-dimensional electron system (2DES) with
two occupied subbands. For magnetic fields above 9T, we found fractional quantum Hall levels
centered around the filing factor ν = 3/2 in both the two occupied electric subbands. We focused
specially on the fractional levels of the second subband, whose experimental values of the magnetic
field B of their minima do not obey a periodicity law in 1/|B−Bc|, where Bc is the critical field
at the filling factor ν = 3/2, and we explain this fact entirely in the framework of the composite
fermions theory. We use a simple theoretical model to give a possible explanation for the fact.

Copyright c© EPLA, 2011

Introduction. – The study of high-electron-mobility
semiconductor nanostructures at low temperatures and
at high magnetic fields has revealed a variety of new
phenomena associated to energy quantization in magnetic
field and to many-body effects. One of the very known
ones is the integer quantum Hall effect (IQHE), which is
a consequence of the quantization of the electron energy
levels in the sequence of Landau levels (LL).
The IQHE consists in the appearance of a series of

plateaux in the transversal magnetoresistance Rxy (Hall
resistance), acompanied by a series of minima in the
longitudinal magnetoresistance Rxx [1]. In the IQHE the
positions of these Rxy plateaux and Rxx and minima are
determined by the values of the filling factor ν, which
must fit integer values. At yet higher mobilities, a new
effect emerges whose origin lies on electron many-body
interactions. It is manifested by similar features on both
Rxx and Rxy, and is well known as fractional quantum
Hall effect (FQHE) [2], since the plateaux (minima) in Rxy
(Rxx) appear at fractional values of the filling factor ν.
The early investigations have shown that in the FQHE
ν = p/(2p+1) with p > 1 and ν = p/(2p− 1) with p� 1.
(a)E-mail: celso@fisica.ufpr.br

In order to give a theoretical explanation for the FQHE,
the concept of composite fermions (CF) [3] has been postu-
lated, in a framework where both IQHE and FQHE are
described in a unified picture. In this theoretical model,
the FQHE of electrons is considered to be equivalent to
the IQHE of CF. To explain the fractional values of the
filling factor ν, it is assumed that each electron is coupled
to an even number n of quanta of magnetic flux φ0 = h/2e
(usually n being equal to 2), which is equivalent to say
that each electron is coupled to a fraction of a quantum
of magnetic flux φ0/n. As a consequence of this coupling,
the external magnetic B field is reduced by the amount
Bc = nsφ0, where ns is the electron sheet density, and the
residual magnetic field is given by |B−Bc|. In particular,
the recent observation of the fractional state at ν = 5/2 [4]
led to consider the existence of even-denominator filling
factors that are known as non-Abelian states that could
have implications in quantum computation [5].
Recently the appearance was reported of fractional

levels of two distinct electric subbands in a series of
magnetoresistance spectra [6]. In the present work we will
concentrate our attention on the fractional states around
the ν = 3/2 states belonging to the second electric subband
in a AlGaAs/GaAs triple quantum well (TQW).
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Fig. 1: (Color online) (a) Single-trace SdH and Hall spectra
of the TQW sample R121, at different gate voltages: −2.0V
(dashed black lines), −1.25V (dotted red lines) and 0.0V
(solid blue lines). Some filling factors are shown. (b) Enlarged
view of the spectrum shown in (a) corresponding to zero gate
voltage. The filling factor ν = 3 is marked. The insert of (a)
shows the calculated electron-density profile (dashed curve)
and conduction-band edge Ec (solid curve) at zero gate voltage,
when we have an electron density (ns = 9.0× 1011 cm2).

In fig. 1(a) we present the result of Shubnikov-de Haas
(SdH) and Hall measurements on our triple quantum well
(TQW) sample R121 for different applied gate voltages Vg.
It can be seen the wide quantum Hall plateaux in the Hall
resistivity, acompanied by the vanishing of longitudinal
magnetoresistance Rxx. At fields between 10T and 15T
it can be seen a series of oscillations in Rxx that reveals
the emergence of fractional quantum Hall states, which
disappear with the application of large negative voltages.
In fig. 1(b) we present an enlarged view of these fractional
states for the case of Vg = 0.0V. It can be clearly seen
the disappearance of the plateau at filling factor ν = 3 for
Vg = 0.0V, which gives place to the emergence of fractional
levels at ν = 1+3/2, that soften as a negative voltage is
applied (see fig. 1(a)).
This work is organized as follows: in the second section

we present the details of the samples and of the measure-
ments. The third section is dedicated to present the exper-
imental results and the analysis of the experimental data,
and the fourth section summarizes the conclusions of this
work.

Samples and experimental details. – Two samples
of TQW and one sample of double quantum well (DQW)
were grown on undoped (100) GaAs substrates by
molecular-beam epitaxy. The DQW system comprises

two 140 Å thick GaAs wells separated by a 14 Å wide
Al0.3Ga0.7As barrier. In the TQW structures, the central
well (140 Å wide) is wider than the side wells (120 Å wide)
in order to the Coulomb electron repulsion do not
completely deplete the central well, allowing electron
tunneling between the lateral wells. The barriers between
the wells were 14 Å wide (sample R120) and 20 Å wide
(sample R121) of undoped Al0.3Ga0.7As layers. In all
samples, carriers are supplied by two Si remote delta
doping layers (nominal doping concentration in each
Si layer 2.2× 1011 cm−2) located on both sides of the
structures.
Shubnikov-de Haas (SdH) and Hall measurements were

performed on the samples on the Hall bar geometry at
the temperature of 50 mK in a bath cryostat inserted into
a superconducting coil using standard lock-in techniques.
The test samples have 100µm wide Hall bars with the
distance between the voltage probes L= 200µm. The
ohmic contacts were made with In. An evaporated Ti/Au
frontside gate was used to control the electron densities
within the layers. We measured the longitudinal and Hall
resistivities varying the applied gate voltage Vg with steps
of 0.02V in the range from −1.5V to +1.0V for the DQW
sample, from −2.5V to +0.76V for the TQW sample
R120 and from −1.2V to 0.8V for the TQW sample
R121, sweeping the external magnetic field from 0 to 15T,
applied perpendicularly to the two-dimensional electron
layers. The applied current was typically about 1µA.

Experimental results. – Transport measurements
revealed that the TQW samples R120 and R121 showed
fractional levels (FQHE) more distinctly seen than the
DQW sample in the studied range of magnetic fields and
gate voltages. However, sample R121 showed the best
mobility and as a consequence the minima in Rxx at
the fractional levels region are more pronounced. By this
reason this work will focus on the results of this sample.
SdH spectra for sample R121 were grouped in a

colourmap, which corresponds to the diagram of Rxx
in the plane ns×B shown in fig. 2(a). In this diagram
we clearly see a series of parallelogramlike structures
resulting from the crossing of magnetoresistance peaks,
and one of these parallelograms is involved by a dotted
circumference in the figure. Both parallelogramlike and
ringlike structures have been reported as a characteristic
of two subband occupancy in 2DES [7–9], and their
origin lies on the particular behavior of the Fermi energy
as a function of the magnetic field. While the ringlike
structures are typical for two occupied subband single-
layer systems [7–9], the parallelograms seem most likely
to resemble the magnetoresistance of two independent
systems with different electron densities. In fact, in
fig. 2(a) the magnetoresistance peaks form two series of
lines: the first, a set of almost vertical parallel straight
lines, which is associated to a 2DES with constant electron
density (since the period in 1/B does not vary with ns)
and correspond to the LLs of the first electric subband;
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Fig. 2: (Color online) (a) Experimental colourmap of the
magnetoresistance Rxx for the TQW sample R121. (b) Corre-
sponding simulated colourmap without phenomenological
smoothing (µ= 1) and (c) with smoothing (µ= 0.5). In all
these three colourmaps, some filling factors are shown and the
parallelogramlike structures that have correspondence in the
colourmaps are stressed by the dotted circle (see explanation
on the text).

and the second, a set of inclined lines, which is associated
to a 2DES with increasing electron density (since the
period in 1/B increases with ns), and corresponds to
the LLs of the second electric subband. Actually the two
2DEGs are not independent in sample R121, since neither
the inclined lines nor the vertical ones are perfect straight
lines, revealing some intersubband charge transfer which
is a clear consequence of the expected electron tunneling
along the central well. In particular, while the sample
R121 showed typically parallelogramlike structures, the
sample R120 showed ringlike ones (we will not present
the colourmap for this sample since this comparison of
shape of structures is not the main purpose of this article,
and this study can be found elsewhere). Note that the
internal barriers between the three wells in sample R121
(20 Å wide) are wider than the barriers on sample R120
(14 Å wide), so the lower value of barrier width increases
the tunneling in sample R120, increasing the mutual
dependence of the electron populations confined on the
two occupied subbands of sample R120.
In fig. 2(b) we present a Rxx colormap diagram obtained

by a numerical simulation using a single-particle theo-
retical model for the magnetoresistance [9]. The fitting
parameters were chosen in order to achieve the best
similarity to the experimental diagram for sample R121
(fig. 2(a)): the GaAs electron effective mass m∗ = 0.066me
and the Landé g-factor −0.44 enhanced by an exchange

contribution with α= 0.1 [9,10]; also, the symmetric-
antisymmetric energy gap ∆SAS [11], whose value showed
to be almost linearly dependent on the total electron
sheet density ns, such that from ns = 6.5× 1011 cm−2 to
10× 1011 cm−2, ∆SAS varied from 7.3meV to zero. The
inspection of figs. 2(a) and (b) reveals that the verti-
cal lines in panel (a) are not present in panel (b), in
place of what we see “zigzag” shaped lines. For magnetic
fields in the range between 2.5 and 4.0T and ns in the
range between 5.5 and 7.0 × 1011 cm−2 the experimental
colourmap of fig. 2(a) is slightly different from the calcu-
lated one shown in fig. 2(b) probably because of the emer-
gence of some LLs belonging to the third subband.
According to the above considerations concerning the

ringlike and parallelogramlike structures present in the
ns×B magnetoresistance diagrams, it is clear that to
avoid the “zigzag” shape and achieve better similarity
between calculated and the experimental diagrams it is
necessary to eliminate or at least reduce the charge trans-
fer between the two lowest occupied subbands. Avoiding
more elaborate self-consistent calculations to determine
the electron distribution within the TQW in the presence
of external magnetic field B, we simply applied a simple
phenomenological smoothing on the Fermi energy1,

EF (B)→EF (0)+µ [EF (B)−EF (0)], (1)

where µ is an arbitrary parameter. This smoothing does
not change our conclusions and will be useful in the
further analysis of the fractional states. In fact, the
shape of the Fermi energy is decisive for the determina-
tion of the morphology of the magnetoresistance ns×B
diagrams [12], but we must stress here that such a phenom-
enological smoothing does not modify the topology of
the ns×B diagrams neither with respect to the IQHE
levels nor with respect to the FQHE levels. In fact, we
repeated the calculation without the smoothing process
(not presented here for brevity) and confirmed that all the
conclusions that we achieved to in this work are the same.
In fig. 2(c) we present a simulation with smoothed Fermi
energy with µ= 0.5. The strong similarity between the
theoretical smoothed (see fig. 2(c)) and experimental (see
fig. 2(a)) results ensures the convenience of the smooth-
ing procedure. Note that the “zigzag” lines found in the
simulated colourmap of fig. 2(b) are converted in almost
straight lines in fig. 2(c). Yet in this figure we enclosured
with a dotted circle the same parallelogram that corre-
sponds to the structures evidenced in figs. 2(a) and (b).
Let us go back to the experimental colourmap, fig. 2(a).

Above around 10T, we can see the onset of the emergence
of fractional levels which are seen enlarged in fig. 3(a). In
this figure, around ns = 5.8× 1011 cm−2 some fractional
levels centered about the field Bc1 = 13T emerge as a

1In fact, in our calculations we considered that subband energy
separations ∆SAS are constant with respect to the magnetic field,
but in a more elaborated model where the Schrödinger and Poisson
equations are solved self-consistently for nonzero magnetic field, they
do not necessarily result constant.
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Fig. 3: (Color online) (a) Detail of the ns×B diagrams of
sample R121 shown in fig. 2(a), where we can see clearly the
onset of the formation of the fractional states of the first (verti-
cal dashed lines) and the second (inclinated dashed lines) popu-
lated electric subband levels. Some of the fractional as well as
integer filling factors are marked. (b) A numerically simulated
diagram with the best fitting parameters for comparison.

set of almost vertical lines, which we will label as F1.
Similarly, another set emerges centered around the field
Bc2 = 9.9T when ns = 7.5× 1011 cm−2, which we will label
as F2. A particular detail that can be seen after inspection
of fig. 3(a) is the fact that crossing of the sets F1 and
F2 do not show the above-mentioned ringlike structures.
Following our above considerations, we can conclude
that there is not a CF interchange between both these
fractional states F1 and F2.
The unexpected convergence of the lines of the set F2

to the point at Bc2 has the most profound implication
that the values of the magnetic field B of the minima of
the levels in F2 do not follow a periodicity in 1/|B−Bc2|,
which is a very known characteristic typical of LL in the
FQHE regime. In other words, for a given value of the
total electron density ns, the positions of the minima of
the magnetoresistance Rxx in the fractional region of the
second subband cannot be calculated uniquely by this
1/|B−Bc2| rule, since the fractions positions are primarily
determined by their filling factors ν2 = p/(2p± 1) (see the
first section) and the mathematical relation between B
and ν2 involves the second subband electron sheet density,
ν2 = ns,2/|B−Bc2|.
In fig. 3(b) we show for comparison a simple simu-

lated diagram with the same fitting parameters of fig. 2(c)
employing the theoretical model described in the appen-
dix. For simplicity, we do not consider the contribution

of electrons arisen from delocalized states. Important
assumptions in this calculations were the following:

1) CF and electrons were considered as independent
particles, in the sense that they have independent
Fermi energies2;

2) The intersubband energy separation between the CF
Landau fans is not itself ∆SAS , but a lower value
(we have employed for simplicity the value 1/2∆SAS)
—which is essential to give the convergence of the
set F1 to a point (Bc2).

In addition, we have considered that the CF effective
mass is given by [2]

m∗ = βm0
√
B, (2)

where m0 is the electron rest mass and β is a para-
meter with units of B−1/2 [14]. We verified that this
parameter determines the position of the point Bc2 in
the colourmap. Our fitting yeilded β = 0.2T−1/2, a value
that was previously reported [14]. In this simulation we
show only low-order fractional levels (p1,2 = 1, 2, 3 in the
expression νi = pi/(2pi± 1)).
In the calculations within our model, we verified that

below Bc2 there is another set of fractions around ν2 =
1+1/2 that emerge (in other words, Bc2 is a “quenching
point” for the fractional set F2). However, we are not inter-
ested on this low-field region since we do not see any frac-
tion in the experimental colormap of fig. 3(b) below Bc2.
Note that the upper regions of the colormap of figs. 3(a)

and (b) extend up to ns = 8.6× 1011 cm−2, the same as in
the experimental colormap of fig. 2(a). Unfortunately this
limits the visualization of the crossing region that could
be benefited if we extended the upper limit to higher ns
value. However, note that we are treating the crossing
of fractions around the same value of subband filling
factor, i.e., ν1 = ν2 = 1+1/2, which in the limit when ν1
crosses ν2 there are equal subband populations, ns,1 =
ns,2, since in this case the symmetric-antisymmetric gap
∆SAS vanishes. Then, any higher value of total ns must
correspond to constant zero ∆SAS , and as a consequence
the color map does not present crossings and new topology
above ns = 8.6× 1011 cm−2.
The set of fractional levels belonging to the first

subband that appear in the experimental plot of fig. 3(a)
are neither straight lines nor vertical in the simulated
diagram of fig. 3(b). However, this morphological dissim-
ilarity does not represent any topological difference
between the experimental results and our simple model
and within the limitations of our calculation model it is
acceptable.
Finally, it is worth noting that the positions of the

minima of fractional states are not determined by the
value of the effective mass of CF (parameter β), neither

2In fact, this is valid for the case of one single occupied subband,
as we verified and as can be find in previous work [13].
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by the fact that the CF cyclotron frequency ωCF,Li has
a peculiar dependence on the square root of the field (see
eq. (A.6)).

Conclusion. – We studied the LL crossing between the
fractional levels belonging to different subbands at double
occupancy. Using a simple theoretical model based on the
CF theory, we could construct a calculated colormap of
the magnetoresistance with a topology similar to that
of the experimental colormap. Also, we verified that the
crossings between fractional levels belonging to the two
occupied electric subbands do not show ringlike structures.

∗ ∗ ∗

Support of this work by FAPESP and CNPq (Brazilian
funding agencies) is acknowledged.

Appendix: theoretical fitting of the magnetore-
sistance at fractional levels. – Here we present the
theoretical model for our calculations. The basic assump-
tion is that each magnetoresistance peak is associated to
the coincidence of the Fermi level EF with an energy level
of the system —either associated to IQH or FQH. The
value of Rxx is obtained by the inversion of the conduc-
tivity tensor σ̃, where the longitudinal conductivity σxx is
calculated by the Kubo formula [9].
The problem starts with the determination of the

function density of states DOS(E) that depends explicitly
on the energy E and implicitly on the magnetic field B.
As we have determined DOS(E), we must solve the
equation

ns =

∫ EF (B)
−∞

DOS (B,E) dE (A.1)

from which we determine the explicit dependence of the
Fermi energy EF (B) on the magnetic field B.
Starting from the expression for the DOS in the case of

the IQH [9], our generalization for the DOS for a 2DEG
that includes both integer and fractional quantum Hall
levels in the ideal zero-temperature case is given by

DOS(E) =
∑
{n}
ζnδn(E), (A.2)

where the summation is carried out on all the available
energy levels (integer and fractional) labeled by n. In this
expression, ζn is the level degeneracy of the n-th energy
level, and δn(E) the corresponding functional density
(as will be explained later). For the IQH levels, ζn is
independent of the order n of the level and is given simply
by ζ = eB/h, a well-known result. On the other side, for
the fractional levels the degeneracy depends on the level
and can be calculated simply by means of the filling factor
ν [15]. The degeneracy of the fractional level at filling
factor ν = p/(2p± 1) is ζp = ν/(ν−L)ζ = ν/(ν−L)eB/h.
However, the net magnetic field Bnet experienced by the

CF is not equal to the total applied magnetic field B,
and this must be considered on this expression for ζp.
For example, it can be shown that at the fractional
level ν = 3/2 the net field is given by Bnet = 3(B−B3/2),
where B3/2 is the value of the magnetic field at ν =
3/2 = 1+1/2 [15]. Generalizing this expression for any
fractional level p around L+1/2, where L= 0, 1, . . . labels
the Landau level index, we obtain Bnet = 2ν(B−BL+1/2).
Then, the complete expression for the fractional level
degeneracy is

ζp =
ν

ν−L
e (2L+1)

∣∣B−BL+1/2∣∣
h

. (A.3)

Without loss of generality the level functional density
of states δn(E) was chosen to be a Lorentzian [9,16],

δn =
Γ

1+ (En−EΓ )2
, (A.4)

where Γ is the level broadening. In our calculations,
we used a level broadening Γ= h/τq independent of
the magnetic field [9], but we used different quantum
lifetimes τq for electrons (at IQH levels) and CF (at
fractional levels). The fitted values for the broadening
parameters do not necessarily correspond to the expected
from experiment since in our approximation we did not
consider the delocalized states. For the IQH levels, the
label n in expression (A.4) represents the set of numbers
{L, i, s}, where i= 1, 2, . . . is the subband index and
s=±1 labels the spin. The energy levels in the IQH
regime are given by

EL,i,s =

(
L+
1

2

)
�ωc+∆i+1/2sg

∗µBB, (A.5)

where ωc = eB/m
∗ is the electron cyclotron frequency, ∆i

is subband energy and the last term contains the Zeeman
and exchange spin contributions [10,17]. In our notation,
for the first subband level i= 1, ∆1 = 0 and ∆2 coincides
with the well-known symmetric-antisymmetric energy gap
∆SAS . The situation for the FQH is similar, as we need
only to consider that the LL energy fan for CF is generated
by an effective cyclotron frequency

ωCF =
e |B−Bc|
βm∗
√
B
. (A.6)

Neglecting the spin contribution of CF, the energy
spectrum for the FQHE is

El,i =

(
pi+

1

2

)
�ωCF,Li +(Li− 1/2) �ωc (Bc,i)+∆i,

(A.7)
where the lower-case pi labels the fractional level of the
i -th subband, the upper-case Li labels the integer LL
index corresponding to the νi =Li+1/2 fractional level.
The second term (Li− 1/2)�ωc(Bc,i) is an essential offset
energy, whose explanation will be presented later. Labeling
the CF cyclotron frequency ωCF,Li by the index Li, it is
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given by

ωCF,Li =
e |B−Bc|
βme
√
B
=
e2ν
∣∣B−BL1+1/2∣∣
βme
√
B

(A.8)

as we conclude from our above considerations. Then, the
FQHE contribution to expression (A.2) is

∑
p,i

ζp,iδp,i(E) =
∑
p,±

νp,±
νp,±−Li

2eν
(
B−BLi+1/2

)
h

× Γ

1+ (
Ep,i−E
Γ )2

, (A.9)

where νp,± =L+ p/(2p± 1) is the filling factor of the CF
level labeled by the integer p.
An important parameter is the effective CF field Bc.

The theory previews that Bc originates from the CF
system, acting in opposition to the external applied
field B, and Bc coincides with the value of B at the
filling factor νi =Li+1/2. In practice, calculations need
the determination of this filed. Since ν = nse/hB,

Bc,i =
ns,ie

h(Li+
1
2 )
, (A.10)

then, Bc,i depends on the electron density on the i -th
subband, ns,i, obtained by

ns,i =

∫ EF (B)
∞

DOSi (E) dE, (A.11)

where DOSi(E) means the sum of terms of the DOS
associated to the integer and fractional levels of the i -th
subband.
The complete procedure of calculation is the following:

we start solving eq. (A.1) considering a density of states
function DOS(B,E) comprising the totality of integer
levels and none of the fractionals; then, we determine
EF and in sequence the individual subband electron sheet
densities ns,i solving the eq. (A.11). Immediately we
determine the values of the fields Bc,i with eq. (A.10).
After that, we reconstruct the DOS(B,E) function with
fractional and integer states. Particularlly, now including
all the integer levels except for the integer level Li at filling
factor νi =Li+1/2 that will be further substituted by the
sum of the fractional states. In other words, we keep the
IQHEDOS and replace the subband i integer level at νi =
Li+1/2 by the sum of fractional states (centered at νi).
In sequence, we determine the IQHE+FQHE Fermi energy
solving eq. (A.1). Then, the longitudinal conductivity σxx
is calculated using Kubo’s formula

σxx =
∑
{n}
λnδ

∗
n(B), (A.12)

where for the integer levels λn = (Li+1/2)e
2/h. For δ∗n(B)

we used [9]

δ∗n(B) =
1

1+2(En−EF (B)Γ )2
. (A.13)

For the fractional levels, until our knowledge there
is not an expression for σxx. Despite this fact, in this

qualitative approach we can in principle try any value for
λn, for what we used a phenomenological value λ= 0.5,
which gave good fitting to experimental data. Having the
longitudinal conductivity of the system IQH+FQH, we
determine the longitudinal resistivity ρxx component of
the resistivity tensor from which we determine the desired
magnetoresistance Rxx [9].
An important detail is the following. Solving eq. (A.1),

we verify that the average value of EF (B) in the IQH
region is much higher than the average values in the FQHE
region. Constructing both the Landau fans of the IQHE
and the FQHE in the same diagram together with EF (B)
(i.e., the IQHE fan centered on the zero magnetic field and
zero energy point, and the FQHE fans centered on Bc,i and
zero energy points), we verify that levels of the FQHE fans
will cross the Fermi level in the region of IQH. This would
represent the appearance of unphysical fractional peaks
in the region of pure IQH. This problem is solved adding
a positive offset value to the CF energy. As was done in
eq. (A.7), the most sensate choice for this offset is the
value of the electron cyclotron energy at the field Bc,i.
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